Effective Modeling of Thin-Film Shells Exhibiting Wrinkling Deformations

David W. Sleight, Alex Tessler, and John T. Wang Analytical and Computational Methods Branch NASA Langley Research Center

David.W.Sleight@nasa.gov

FEMCI Workshop 2003 May 7-8, 2003

Outline

- Motivation
- Objectives
- Shell modeling strategies
- Numerical and experimental results
- Conclusions

Wrinkling in Solar Sails

Wrinkling

- Large displacements
- Low strain energy
- Rigid-body motion

Detrimental effects

- Performance
- Stability
- Maneuverability
- Local heating

Testing difficult

- Large size
- Gravity
- Aerodynamics

Objectives

- Explore nonlinear shell modeling of thin-film membranes using ABAQUS
- Achieve high-fidelity wrinkling predictions
- Perform experimental validation

Shell Modeling

Characteristics

- Bending and membrane coupling effects included
- Geometrically nonlinear shell deformations

Capabilities

- Wrinkling amplitude, wave length and shape
- Membrane-to-bending coupling using imperfections
 - Buckling modes (Wong & Pellegrino, 2002)
 - Trigonometric functions (Lee & Lee, 2002)

Wong & Pellegrino

Shell Analysis Issues

Wrinkling initiation issues

- Shear locking for thin shell elements
- Membrane-to-bending coupling in initially flat membranes
- Numerical ill-conditioning of tangent stiffness matrix
- Sensitivity to modeling, loading, and B.C.'s
- Modeling and computational strategies
 - Employ robust shell elements
 - Introduce computationally efficient,
 unbiased random imperfections (w₀)
 - Add fictitious viscous forces to circumvent numerical ill-conditioning
 - Remodel sharp corners and concentrated loads

Numerical and Experimental Results

- Square thin-film membranes
 - Shear loaded

- Tension loaded

ABAQUS Shell Modeling

Basic modeling strategies

- Use robust, locking-free, shell element
- Add fictitious viscous forces to circumvent numerical illconditioning (STABILIZE)
- Introduce small, unbiased, random transverse imperfections to enable membrane-to-bending coupling

$$F_{v} = c M^{A} v$$

$$P - I - F_{v} = 0$$

$$w_0 = \alpha \cdot \delta_{random} \cdot h$$

 $\delta_{random} \equiv \delta \in [-1, 1]$
 $\alpha = 0.10$

Shear Loaded Thin-Film Membrane

Mylar® Polyester Film Properties	
Edge length, a (mm)	229
Thickness, <i>h (mm)</i>	0.0762
Elastic modulus, E (N/mm²)	3790
Poisson's ratio, ν	0.38

Experiment: J. Leifer (2003)

- Tested at NASA LaRC
- Photogrammetry

Experiment vs. Simulation

Experimental Observations using Photogrammetry

ABAQUS Nonlinear Shell FEA

Experiment vs. Simulation

- Random imperfections imposed
- Actual initial imperfections not used

Experimental Observations using Photogrammetry

Tension Loaded Thin-Film Membrane

Simulation from Corner Point Loads

Corner region

- Quad elements collapsed into triangles
- Severe stress concentration

Shell Modeling with Truncated Corners

- Basic modeling strategies
- Additional enhancements
 - Remove sharp corners where loads applied
 - Represent point loads as distributed tractions

Truncated Corners Model

Corner region

Sharp corners removed

- Severe concentration reduced
- Wrinkles develop

Experiment vs. Simulation

- Initial imperfections present
- Non-symmetric wrinkle pattern
- Random imperfections applied
- Symmetric wrinkle pattern

Conclusions

- Large displacement shell modeling of thin-film membranes to achieve wrinkling deformations
 - Robust shell elements free of shear locking
 - Fictitious viscous forces to circumvent numerical ill-conditioning
 - Unbiased random transverse imperfections to enable membraneto-bending coupling
 - Improved modeling of sharp corner regions subjected to tension loads
- Numerical examples and experimental validation
 - Square membranes loaded in shear and tension
 - Numerical results compared favorably with experiments

Conclusions (cont.)

- Remaining Issues
 - Element technology
 - Nonlinear analysis convergence and viscous-force stabilization
 - Adaptive mesh refinement / robust error estimation
 - Sensitivity to boundary conditions and applied loading